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Abstract Pecuhar analytical results encountered in the literature on continuously supported struc­
tures are pOlllted out and investigated. They are: (I) for a finite beam which rests on a Winkler
foundation and is centrally loaded by a concentrated force P. the points of separation of beam and
base are not affected by the magnitude of the load. and (21 according to the well known solution
for an intinite (or a semi-infinite) beam allached to a Winkler foundation and subjected to a
concentrated load P. the location of the zero points for deflections and bending moments do not
depend on P Intuitively. it is expected that these entitles should depend on the load P. At first. it is
shown that these peculiar results are a consequence of the linearity of the respective formulations
and that the same feature "ill also be exhibited for other hnear foundation models (for example.
the Pasternak model or the elastic continuum) To clanfv these analvtical features. the above
problems are re-analysed by including a non-hnearity in 'the Winkler' foundation response. To
simphfy the analyses. a bi-linear response is used. It was found that: (I) for the finite beam that
rests on the base. the intensity of the load does affect the location of the point of separation of beam
and base: namely. that an increasing load and a "stiffemng" base decrease the region of contact:
(2) for the mtinite beam that is attached to the base the situation is similar: an increasing load and
a "stiffening"" of the base decrease the distances of the zero locations and reduce the maximum
bending moment, whereas for a "softening" base these distances mcrease as compared to the linear
Lasc.

I:\TRODlCTIO'< A~D STATE\:IE~T OF PROBLEM

According to the analyses presented by Hayashi (1921. p. 64) and Hetenyi (1946, p, 54) for
a finite beam which rests on a linear Winkler foundation and is subjected to a force P. as
shown in Fig. I. the length of contact between beam and base is:

where

IT

1= /I"

r-ol_........:I'-'.I.=..2__t:-,-,11_2_..,

FIg. Beam on Winkler base with lift-otf

(I)
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(2)

k is the foundation modulus and EI is the bending stiffness of the beam. Thus, the length
of contact is the same for any. small or large, value of the load P. a rather peculiar result.

A similar feature is observed when analysing an infinite or semi-infinite beam attached
to a linear Winkler foundation (Hetenyi. 1946. Chapter 11). Namely. it is found that the
locations of the points where the beam deflection (or bending moment, or shearing force)
are zero do not depend on P. As an example. the results for the infinite beam subjected to
a load P are shown in Fig. 2. l\iote that the first location where the deflection becomes zero
is at

JiT
/ = .

4{1
(3)

Intuitively. one would expect that the length of contact for the problem in Fig. I, or the
location of the zero points in Fig. 2. should depend on the load P.

The explanation of these peculiar results is based on the fact that the analytical
formulation for each of these examples is a linear boundary value problem with the load P
as a non-homogeneity. Thus. the resulting deflection expression is of the form

11(\) 0= P·/ly.{i)

Therefore. the locations.\' where II = O. for P * O. is determined from the condition

/ (\.{l) = O.

(4)

(5)

that does not contain P.
The same argument applies to bending moments and shearing forces, which are

obtained as derivatives of \1'('\). Similar results will also be obtained for different linear
foundation models. like those or Pasternak and the clastic continuum. For examples refer
to Biot (1937). Reissner (1937). Kerr and Cotlln (1991), and the books by Korenev (1954)
and Selvadurai (1979).
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In order to study the scnsitivity of the results. as given in eqns (I) and (3), a non­
linearity has to be introduced.

In actual engineering problems the base often stiffens with an increasing load. As an
example, the response of a railroad track when subjected to a wheel load P, obtained from
tests, is shown in Fig. 3. Note that the recorded load vs displacement relation is non-linear.
It is of interest to determine what effect this non-linearity has on the analytical results
discussed above. and to establish the accuracy of the analyses that are based on the linear
Winkler foundation. This is discussed in the following.

\,\·\IYTlCAL PRIII'vll'\ARIES

The differential eq uation for an clastic beam of constant cross-section is

F/\\" +p(.v) = (/1.\). (6)

where ll'(X) is the deflection at\. (/(.v) is a prescribed dIstributed load and p(x) is the contact
pressure between the beam and the base.

In 1867 Winkler introduced the lincar relation

1'(.\) = klll.\). (7)

The results discussed in the Introduction arc based on this assumption. Only for small loads
Pis eqn (7) suitable for representing the test data in Fig. 3. For a larger range of loads. a
better representation is (Kerr. 19(9)

k
Ii!.\) = sinh [/111'(.\)].

11
(8)

where k and 11 are the foundation parameters. Note that for sufficiently small values of H',

the above relation reduces to eqn (7). l.!tilizing eqn (8), eqn (6) becomes

k
£111''' + sinh [1111(X)] = q.

11
(9)

a non-linear ordinary differential equation. No closed-form general solution is available
for this equation.
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10:0= tana.
k, = tan a,

w·

(b)

BASE DEFLECTION w

hg.4 Bi-llI1car appnHlmation of base response and its mcchanical model.

To simplify the analyses for the problems under consideration, a bi-linear rep­
resentation of the non-linear pressure-deflection relationship is used, as shown in Fig. 4(a),
where k" and k i are the base parameters for the "initial" and "stiffened" zones, respectively.
This bi-linear response is expressed analytically as

p(X) = k,,\I(x) for w:::; w*

p(.Y)=k,,\\*+ki[\I'(X)-II'*] for \I';;?:w*,

(lOa)

( lOb)

where 11'* is the deflection beyond which k" becomes k I, A mechanical model for this bi­
linear response is shown in Fig. 4( b). Since the base response is represented by two
independent spring layers that respond linearly, it follows that k l = ko+k,.

I-I'\ITF BEA\l RESflMj 0'\ A BI-LINEAR BASE

At first. note that for small P the base responds like a linear Winkler foundation with
k = k". Utilizing symmetry, the origin of the coordinate x is placed at the load P, as shown
in Fig. 1. The governing differential equation for the beam is

FIt\' -k,,\1' =0 0:::; x:::; 112, (11 )

The four integration constants and the unknown distance to the point of lift-off, 112, are
determined from the five boundary conditions

\1'(0) = 0;
P

\\"'(0) =-­
2EI

\1'(/2) = 0; \1''''(/2) = 0; w(//2) = O. (12)

Utilizing the first four conditions. the deflection expression, as given by Hetenyi (1946, p.
53). is

Pfl" 1
\I'('Y) = ". . I fJI --:~ to [ :cosh ((~nx) cos [floU-x)] +cos (fiox) cosh [fioU-x)]

-" 'I S1l11 ( III ) + Sll1 ()II )

-- sinh ({i"Y) sin (fl" (1- .y)] + sin ({loX) sinh [flo (I <\')] + 2 cosh (fiox) cos (fio x )}, (13)

where fill = '\~ k" (4£/). The as yet unknown distance to the point where the beam separates
from the base is determined Llsing the fifth condition of eqns (12). The resulting equation
is satistled when fl,,! = T'.. or
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( 14)

The maximum deflection takes place under the load at .\ = O. Since there the deflection
of the beam and the base are identical. the range of P for which the linear analysis is valid
is determined from

It then follows from cljn (13) that the linear analysis is valid when

(15)

2k \r*
P"S p* = "

fll'

sinh (/l"fl + sin (/J"fl
cosh (/J" () + cos (/J" () + 2 .

(\ 6)

Next consider the case where Ir(\) > Ir*. This case corresponds to the situation when
P> p* and thus the deflections in the vicinity of P are in the non-linear range. Using the
bi-linear approximation for the hase response in the vicinity of the load, the beam that
initially deflected linearly with a foundation modulus k" reaches the transition deflection
\1'*. beyond which the foundation modulus changes to k: > k".

To simplify the analysis. symmetry is utilized. Then the beam on the right-hand-side
is divided into three domains. The outer region. not in contact with the base, will be stress­
free and is not included in the analysis. Each of the two regions on the right side in contact
with the base is assigned its own coordinates .\ and ~. as shown in Fig. 5.

The two governing ditferential eljuations arc

f:hr" -t-k I II, = (k -- k" )11" 0 "S .\ "S iI

Fhl"-t-k,,11 =0
(17)

where 11', = I\'(x) and II = I\(~). For the determination of the eight integration constants
and the two as yet unknown lengths (il. h). 10 boundary and matching conditions are
needed, They are:

II (0)= () (a). 11:"(0) = P (2EI) (b).

II, ( a) = \\ (0) (c). II (0) = 11'* (d).

II" (a) = II" (() ) (e), 1\', (a) = II~(OI (fl,

II' ", ( iI) = II :" (()) (gl. 11 (hl= 0 (h).

Ir"(h) =() (iL II "'(h) = 0 (j) . (18)

f------'//-2 -r--_-.:.!.//--=.2_------J

F1~ :i FlI1itc hcanl I-n hl-lincar hasc
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The general solutions of the governing differential equations are:

II'(X) = [(k l ~kn).kl ]11'* + A I cos (/J1V) cosh ({JI x) + A" sin ({3IX) cosh ({3IX)

+ A, cos (/j 1x) sinh ({31 x) + A 4 sin ({31 x) sinh (fJ I x)

w(~) = A, cos (/jn ~) cosh (/jn~) + A h sin (fln~) cosh ({JnO

+ A" cos (/;n~) sinh (/jo~) + As sin ({3o ¢) sinh ({3o ¢), (19)

where

(20)

Substituting the above expressions into the boundary and matching conditions, except
for eqns (e) and (g). yields the eight integration constants:

PI-. I In (cS - cs) + 211'*(1-. 1 {JT kncc - t1 c{36 k 1s·n
--~-- .. _------- -_ -

21-. I {JT k I (i'c + CC )

11'*
A" = + tJ., [sin(floh) sinh (flnh)-cos ({3nh) cosh ({jnb)].

11'*
A, = - tJ. [(sin (/jnh) sinh ({Jnh)+cos(/jnh)cosh({3nb)].

1

where

11'*
A~ = + tJ. [cos (/joh) sinh ({Joh) -cosh ({3nb) sin ((job)].

1

s=sin(/J,a) 1'= sinh (/jla)

c=cos(/jla) c=cosh({Jla)

1-. 1 = cos ({Joh) sinh ({Joh) + sin ({job) cosh ({job)

I-. c = cos ({Joh) sinh ({Joh) -sin ({job) cosh ({3ob).

(21)

(21')

The unknown lengths (a. h) are determined from the two remaining matching
conditions. eqns (18e. g). They yield two non-linear simultaneous algebraic equations for
these two unknowns:

- (A I - A..l sin ({31 a) cosh ({31 a) + (A 1+ A4 ) cos (fJ Ia) sinh ({31 a)

+ (A c + A,) cos ({31 a) cosh (PI a) + (A c - A,) sin (PI a) sinh (!31 a) = (A 6 + A 7 )!301!31 (22)

- (A 1+ 04 4 ) sin ({J Ia) cosh ({J Ia) - (A c + A,) sin ({J I a) sinh (PI a)

+ (A 4 -- AI) cos (/J I a) sinh ({JI a) + (4, - A,) cos ({31 a) cosh (!31 a) = (A 6 - A 7 ){jbIPi. (23)

A computer program was devised for solving these two equations. They were solved,
at first. for ;' = k I ko = 2, The results. for a range of load parameters ie, are shown in Fig.
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6. Note that for P < P*. i.e. for i. < i.* = P*j1o/(kow*) the value of /301 is equal to n, as
predicted by eqn (14). According to eqn (16), the corresponding value, which is the
transition point from the linear to the bi-linear response, is

.* _ P*fJo _
J. - k ~* - 1.834.

'0 II'
(24)

The dependence of the contact length 1/2 on the load parameter A, for various values
of the "non-linearity" parameters ;. = k I /ko, are presented in Fig. 7. The case i = 1, shown
as a horizontal straight line, corresponds to the linear case. According to Fig. 7, for
), ~ 1.834, the half contact length 12 = n!(2/3o), the linear case. However, for P > P*, when
the beam enters the non-linear response range with the foundation modulus k 1, the curves
separate. Note that with increasing ki/k o, i.e. with increasing stiffening of the base response,
and increasing load P. the contact region I decreases.

To demonstrate the type of non-linearity represented by the chosen values 'Y = k l!k o,

the corresponding base pressure vs deflection graphs are shown in Fig. 8.

INFI:--JITE BEAM ATTACHED TO A BI·LINEAR BASE

This case is shown in Fig. 2. As in the previous section for small P, the base responds
like a linear Winkler foundation with k = k o. This is a well known case. Utilizing symmetry
it is governed by the differential equation
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Ehrl\ +kolV = 0 0 < X < CO (25)

and the corresponding boundary conditions

1\"(0) = 0;
P

11''''(0) =­
2EI

!i~ [w, lr'} -> finite.

The solution is

PfJo {' .
Ir(x) = 2koe ''''(cosfJox+smfJox) 0 ~ x ~co.

(26)

(27)

To determine the locations where the deflections are zero, we set w(.~) = O. This condition
reduces to

with the roots

(28)

The corresponding bending moments are

7n
4fJo ' ... (28')

Setting M(q = 0 and solving for" yields

(29)

n
." = 4fJ~'

5n
4f3o ' ... (30)

These results are presented in Fig. 2.
The maximum deflection takes place under the load at x = O. The range of P for which

the linear analysis is valid is obtained from the condition 11'(0) ~ 11'*. It then follows from
eqn (27) that the linear analysis is valid when

2k 11'*

P~';~o-=P*' (31 )

Next consider the case when w(x) > w*. This corresponds to the situation when
P> P*, and thus the deflections in the vicinity of P are in the non-linear range. To simplify
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the analysis, symmetry is utilized, the beam is divided into two domains and each domain
is assigned its own coordinates x and ~,as shown in Fig. 9.

The two governing differential equations are

(32)

where 1\', = \\'(.Y) and \\', = \\,(~), For the determination of the eight integration constants
and the as yet unknown length. a. the following nine boundary and matching conditions
are prescribed:

\\',(0) = O.

\\,(0) = \r(O). \\',(0) = 1\'*. \\,',(0) = «0).

\\':UI) = \\"(0). <"(0) = <"(0), lim [\j',.<J --->finite.
..:.---+-.1.

This case was solved by Kerr and Shenton (\986). The general solution is

(33)

l\'(X) = [(kl-k ll ) k ]\\*+.4 1 cos(/jix)coshWlx)+Ac sin (/il x) cosh (tJlx)

+ A J cos (/i 1x) sinh (tJ IX) +.4 4 sin W I x) sinh WI x)

\\(~) = e (34)

Substituting these expressions into eqns (33). except for \«a) = 1«0), yields the eight
integration constants

I \ prj 1 -' - -- I\'* l- I - - -]}Al =" '1'-'- [s'-,\"+I\'(sc-sc))+ ...,1",\+ .J(sc+sc+h'cc) ,
L\ I, ~I\ I 1\ '\

-PtJl
A, = ')k .

~ I

A, = \1'*.

(35)
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fable' I. !\on-Jllnensiolldl kngth fino for various i. and ~' values

Plj" ~()(1I -;:: O~" 0.) - ~O ;' = 4.0 ./ = 8.0
I. =

/.:(1 11'* (h~(UI(,1 (h' ~ 1)7ll71 = OX~II (I, = lIX9) (I' = 1.414) (I' = \.682)1".-
--------- -------- ---_.

0 0 0 0 0 0.. I.XXI 1.1"1 1.19~ (l.X4(, 0.695 0.565
6 .'.106 I.XSO 1.565 1.073 0.X74 0.706
X .'9XI ~.I ~l) I 7X~ 1108 0.981 0.792

10 ...601 ~ ..' 17 1.l)~9 1199 1.055 0.851
I" ".56.' 2.607 ~.1)6 1.443 1.170 0.945
~O 6.127 2.'7LJ ~.~l) I 1.57X 1.239 1.001
25 6)OX ~X9" 2.JX2 1.5X5 1.285 1.039
.'0 6.7XS 2.lJ 7Y ~.44X 1.627 1.319 1.067
.') 7004 .'0.... 2.498 1.659 1.345 \.088
40 7 177 'Ill)'; ~".'~ 1.6X4 1.365 1.\05

where

\ = sin (/llu), S = sinh (PIU).

/ = cos(/llu), C = cosh ([Jla).

~ = .IC+SC+I\·(S· +/:). I( = /II!l" = ~kl/ko = ~';"

(35')

The unknown length a is determined from the remaining condition 1I";(a) = IV~(O). The
resulting equation is. for h' i= O.

(36)

It is a highly non-linear algebraic equation for the one variable Pia or "poa, which depends
only on the non-dimensional parameter

PII"
I. =.

k"I1'* .
(37)

Equation (36) was solved numericall) for /l"a using the International Mathematics and
Statistics Library (lMSL) subroutine ZSCNT for a wide range of I. and}' values. Some of
the obtained results are shown in Table I.

Next, the points at which the deflection is = () (length L) are determined, by plotting
the resulting \I'" For this we utilize the U values from Table I in order to establish the origin
of the ~-coordinate for a given load parameter i. and',' = kl/k o. The calculated values PoL
are presented graphically in Fig. I()

The linear case..,' = I. is represented hy a horizontal straight line for which PoL = 3n/4,
in agreement with Fig. 2. Thus. as discussed previously, for this case L does not vary with
P, small or large.

For;' i= I (bi-linear base response) and small P values, L is independent of P. However,
as P exceeds p* and the base exhibits a bi-linear response, the curves for different r = k dko
separate. as shown in Fig. 10. The i value at which the separation takes place is determined
from eqn (31). It is

* _ P*/11J _ ..,
I. - /.;11\1'* --'-. (38)

The case = 0 takes place when k I = O. It corresponds to a horizontal line for IV> w*
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in Fig. 8 (elasto-plastic responsel. Since the presented solution is not valid for~' = 0, it was
calculated for a very small value of ~'. This case was also solved directly by replacing the
first differential equation in (32) by

E/\I,I,' +- p* = 0 () <\ < (/. (32')

The results agreed. The corresponding curve is shown in Fig. lO as ./ = O.
Next, a similar analysis was cond ucted for bending moments, noting that M = - Elw".

The determined distances L\l of the first zero from the load P are shown in Fig. II. Note
the strong effect the base non-linearity. and the load P. have on the location of the first
zero of the bending moment distribution, L\l'

Next, we establish the effect of the track base non-linearity on the rail bending
moments. As an example. the largest bending moment which takes place at the load P will
be determined.

Noting that l\J(X) = - Lhr"CY) and that \I(Y) IS given in eljn (34), it follows that

(39)

where A 4 is given in eljn (35) This moment expression is evaluated for a continuously
welded liS RE rail (I = 2743 C111

4
) of a main-line track. with E = 20,000 kN cm 2

. For the

4

1/2

----'- 2_, --j

0.6

:<
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en. ltw/f--JE:----
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Fig. 12. Effect of stIffening base on the rail bending moment at P.

track base it is assumed that ko = 0.5 kN cm- 2
• k , = 2.5 kN cm- 2 or k , = 5.0 kN cm- 2

and ,1'* = 0.25 cm. respectively. For a justification of these parameters refer to Kerr and
Eberhardt (1992). The results of the numerical evaluation are shown in Fig. 12.

Note that for wheel loads P > P * = 2kow*! f30 = 36.18 kN, the actual bending moments
may be much smaller than those predicted by the linear analysis with ko = 0.5 kN cm~2.

For example. when P = 100 kNt and k , = 2.5 kN cm- 2, the largest bending moment M(O)
according to the linear analysis is 31.5°/'0 higher than the one obtained from the non-linear
analysis. For k[ == 5.0 kN cm- 2 it is 47% higher. Since the bi-linear analysis represents
closely the actual response in the field. it follows that the linear analysis with k o = 0.5 kN
cm -2 substantially overestimates Mm"x = M(O).

It may be shown (Kerr and Shenton, 1986; Kerr and Eberhardt. 1992), however, that
for problems of this type the linear analysis grossly underestimates the contact pressure
between beam and base at P.

The mechanical explanation of these analytical results is that, because of the stiffening
of the base for P > p* in the vicinity of P. in an actual case the deflections and curvatures
in this beam region are smaller and the contact pressures are larger than the ones that
correspond to the linear analysis.

CONCLCSIOr-;S

At first it was shown that the non-dependence of the separation points in the first
problem (Fig. I), and the location of the zero points in the second problem (Fig. 2), on the
load intensity are a consequence of the linearity of the respective formulation.

To show the deficiencies that may result using a linear base response, a non-linearity
was included in the Winkler foundation, by utilizing a bi-linear response. The following
results were obtained. (I) For the finite beam that rests on the base, the load intensity
affects the location of the point of separation of beam and base, and a "stiffening" of the
base as well as an increasing load decreases the region of contact. (2) For the infinite beam
that is attached to the base it was established that with increasing load and "stiffening" of
the base, the distances of the zero locations get smaller, whereas for a "softening" base
these distances increase, as compared to the linear case. (3) When the k value, which was
determined from a test which utilized a relatively small load, is used in conjunction with
the linear analysis. then for P > p* the bending moment M max = M(O) may be substantially
overestimated. However, the contact pressure Pmax = p(O) may be grossly underestimated.

The above discussion suggests that when analysing continuously supported structures
special attention must be devoted to the non-linear features of the base response.

t "-ote that currently the static wheel loads of freight cars in North America range between 140 and 174 kN.
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