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Abstract - Pecuhar analvtical results encountered in the literature on continuously supported struc-
tures are pointed out and investigated. They are: (1) for a finite beam which rests on a Winkler
foundation and is centrally loaded by a concentrated force P. the points of separation of beam and
base are not affected by the magnitude of the load. and (2) according to the well known solution
for an infinite (or a semi-infinite) beam attached to a Winkler foundation and subjected to a
concentrated load P. the location of the zero points for deflections and bending moments do not
depend on P. Intuitively. it is expected that these entities should depend on the load P. At first, it is
shown that these peculiar results are a consequence of the linearity of the respective formulations
and that the same feature will also be exhibited for other hinear foundation models (for example.
the Pasternak mode! or the elastic continuum). To clarify these analytical features. the above
problems are re-analysed by including a non-linearity in the Winkler foundation response. To
simplify the analyses. a bi-linear response is used. [t was found that: (1) for the finite beam that
rests on the base. the intensity of the load does affect the location of the point of separation of beam
and base: namely. that an increasing load and a “stiffening” base decrease the region of contact :
12) for the infinite beam that is attached to the base the situation is similar: an increasing load and
a “stiffening” of the base decrease the distances of the zero locations and reduce the maximum
bending moment., whereas for a “softening” base these distances increase as compared to the linear
case.

INTRODUCTION AND STATEMENT OF PROBLEM

According to the analyses presented by Hayashi (1921, p. 64) and Hetényi (1946, p. 54) for
a finite beam which rests on a linear Winkler foundation and is subjected to a force P. as
shown in Fig. 1. the length of contact between beam and base is:

1=". (1)

Fig. 1. Beam on Winkler base with lift-off.
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Fig. 2. Infinite beam atiached to a Winkler base.
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(2)
k is the foundation modulus and £/ is the bending stiffness of the beam. Thus, the length
of contact is the same for any. small or large. value of the load P. a rather peculiar result.

A similar feature is observed when analysing an infinite or semi-infinite beam attached
10 a linear Winkler foundation (Hetényi. 1946. Chapter II). Namely, it is found that the
locations of the points where the beam deflection (or bending moment, or shearing force)
are zero do not depend on P. As an example. the results for the infinite beam subjected to
a load P are shown in Fig. 2. Note that the first location where the deflection becomes zero
1s at

[="". 3)

Intuitively. one would expect that the length of contact for the problem in Fig. 1, or the
location of the zero points in Fig. 2. should depend on the load P.

The explanation of these peculiar results is based on the fact that the analytical
formulation for each of these examples is a linear boundary value problem with the load P
as a non-homogeneity. Thus. the resulting deflection expression is of the form

Wt = Py ). (4)
Theretore. the locations ¥ where w = 0. for P # 0. is determined from the condition
f(5 ) = 0. (5)

that does not contain P.

The same argument applies to bending moments and shearing forces, which are
obtained as derivatives of w(x). Similar results will also be obtained for different linear
foundation models. like those of Pasternak and the clastic continuum. For examples refer
to Biot (1937). Reissner (1937). Kerr and Coffin (1991), and the books by Korenev (1954)
and Selvadurai (1979).
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Frg. 3 Test results { Talbot. 1919).

In order to study the sensitivity of the results, as given in egqns (1) and (3), a non-
linearity has to be introduced.

In actual engineering problems the base often stiffens with an increasing load. As an
example, the response of a railroad track when subjected to a wheel load P, obtained from
tests, is shown in Fig. 3. Note that the recorded load vs displacement relation is non-linear.
It is of interest to determine what effect this non-linearity has on the analytical results
discussed above, and to establish the accuracy of the analyses that are based on the linear
Winkler foundation. This is discussed in the following.

ANALYTICAL PRELIMINARIES
The differential equation for an elastic beam of constant cross-section is
EIv™ +p(x) = glv). (6)
where w(x) is the deflection at x. ¢(v) 1s a prescribed distributed load and p(x) 1s the contact
pressure between the beam and the base.
In 1867 Winkler introduced the lincar relation
PY) = kw(x). (7)
The results discussed in the Introduction arc based on this assumption. Only for small loads
P is eqn (7) suitable for representing the test data in Fig. 3. For a larger range of loads. a

better representation is (Kerr. 1969)

I
pLy) = . sinh [mve(v)]. (8)

where & and » are the foundation parameters. Note that for sufficiently small values of w,
the above relation reduces to eqn (7). Utilizing eqn (8), eqn (6) becomes

k
Eht +  sinh [imv(v)] = ¢. (9)
2

a non-linear ordinary differential equation. No closed-form general solution is available
for this equation.



902 A.D.Kerrand N. E. Soicher

a
i (a) (b)
>
g
gf actual response ks
E prloo v," (]
8 o ' ko= tan o
v ki=tana,
o :
wi

BASE DEFLECTION w

Fig. 4 Bi-linear approximation of base response and its mechanical model.

To simplity the analyses for the problems under consideration. a bi-linear rep-
resentation of the non-linear pressure—deflection relationship is used, as shown in Fig. 4(a),
where &, and &, are the base parameters for the ““initial”” and *‘stiffened” zones, respectively.
This bi-linear response is expressed analytically as

Py = k(v for w<n* (10a)
Pl = kyuw* 4k v(x)—w*] for w = w¥, (10b)
where w* is the deflection beyond which &, becomes k,. A mechanical model for this bi-

linear response is shown in Fig. 4(b). Since the base response is represented by two
independent spring layers that respond linearly. it follows that k|, = k,+k..

FINITE BEAM RESTING ON A BI-LINEAR BASE

At first. note that for small P the base responds like a linear Winkler foundation with
k = k. Uulizing symmetry. the origin of the coordinate x is placed at the load P, as shown
in Fig. 1. The governing differential equation for the beam is

E" ~kow =0 0<x<//2. (11)

The four integration constants and the unknown distance to the point of lift-off, //2, are
determined from the five boundary conditions

wi(l2)y=0: w’(l2)y=0. w({j2)=0. (12)

Utilizing the first four conditions. the deflection expression, as given by Hetényi (1946, p.
$3).is

PR, 1
2k, sinh (f,4) +sin ($,0)

—sinh (f,x) sin [, (/— )] +sin {fox) sinh [B, (/- x)] + 2 cosh (Byx) cos (B}, (13)

wix) =

rcosh (fax) cos [Bo (I — x)] +cos (By.x) cosh [B,(/— x)]

where i, = 'k, (4ED). The as vet unknown distance to the point where the beam separates
from the base is determined using the fifth condition of eqns (12). The resulting equation
1s satisfied when f,/ = 7. or
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/ 7
2, (14

The maximum deflection takes place under the load at v = 0. Since there the deflection
of the beam and the base ure identical. the range of P for which the linear analysis is valid
is determined from

w(0) < w*, (15)
[t then follows from eqn (13) that the linear analysis is valid when

2hkow*  sinh /7“/)+sm /f‘,/

P<Pr=
= o cosh (Bl +cos (Bl +2°

(16)

Next consider the case where w(x) > w*. This case corresponds to the situation when
P > P* and thus the deflections in the vicinity of P are in the non-linear range. Using the
bi-linear approximation for the base response in the vicinity of the load. the beam that
initially deflected linearly with a foundation modulus k,, reaches the transition deflection
w*_ beyond which the foundation modulus changes 10 A, > &,

To simplify the analysis. symmetry is utilized. Then the beam on the right-hand-side
is divided into three domains. The outer region. not in contact with the base, will be stress-
free and is not included in the analysis. Each of the two regions on the right side in contact
with the base is assigned its own coordinates x and 2. as shown in Fig. S.

The two governing differential equations are

Fhw' +hw, =k —hn* 0< vy <y
(17
Fhnw +hkw =0 0< &b,

where w, = w(x) and w. = w(J). For the determination of the eight integration constants
and the two as yet unknown lengths (¢. ). 10 boundary and matching conditions are
needed. They are:

w0y =10 {a). w’(0)y= P 2EI) (b).

woAd) =uw 0y (c). v l) =u* (d).

wolay = w0y (e).  wl(w) = nwi(0) (f),

w. (@) = w(0)  (g). wAh) =10 (h),

4j=}

wiih) =0 (. w’hy=0 (j). (18)
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Fig. 5. Finite beam on bi-lincar base
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The general solutions of the governing differential equations are:

w(x) = [(ky — ko) k Iw*+ A, cos (5, x)cosh (ff, x)+ A, sin (8, x) cosh (B, x)
+ A, cos (ff,x)sinh (f,x)+ A, sin (§,x) sinh (f, x)
w(&) = A< cos (fy<)cosh (By3) + A, sin (f,E) cosh (S E)
+ A~ cos (f3,€) sinh (B,8) + Ag sin (B &) sinh (B€),  (19)

where
Bo = Sko(4ED and B, = Jk,/(4EI). (20)

Substituting the above expressions into the boundary and matching conditions, except
for eqns (e) and (g). yields the eight integration constants:

PA,| Bi(5—cs) + 20 (A, Bk et — As Bk, 55) Pp,
4, = —Sd S R Ay = — Ay =,
2A Bk (57 + ) 2k,
4 = “PABUES ) - 0KA Bikosi+ Aafiokice)
- 20, fik (5 + ) T
3k
A, = +Z [sin (f,5) sinh (f,h) —cos (B,h) cosh (Byb)].
1
w* )
A, = — A [(sin (f,b) sinh (f,h) +cos (B,h) cosh (B,6)],
|
K
Ay = +—g [c0s (Bob) sinth (fuh) —cosh (B4b) sin (Bob)]. 1)
1
where
s=sin(f,a) §=sinh(f,a)
¢ =cos(fu) ¢ =cosh(f )
A, = cos (B,h) sinh (,h) +sin (B ) cosh (B,b)
A, = cos (f,h) sinh (ff;h) —sin (B,b) cosh (f,b). 219

The unknown lengths (4. h) are determined from the two remaining matching
conditions, eqns (18e. g). They yield two non-linear simultaneous algebraic equations for
these two unknowns:

— (A, —Ay)sin(fa)cosh (B,a)+(A4, + A,) cos (f,a) sinh (§,a)
+(A4:+A)cos(Bia)cosh (S a)+(A-— Ay)sin(fa)sinh (B,a) = (4, +4)Bo/B,  (22)

— (A, + Ay)ysin(Ba)cosh (B,a) — (4. + A:) sin (B,a) sinh (f,4a)
+ (A —A,)cos (B a)sinh (B,a) + (4. — Ay )cos (B a) cosh (B,a) = (4, — A7)BS/B.  (23)

A computer program was devised for solving these two equations. They were solved,
at first. for ;' = k, k, = 2. The results. for a range of load parameters #, are shown in Fig.
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1.6 : . . !
2 . v =1, Linear Case
LSt O , .
1ab L : : 2 4
a 'I
S i 4
12}
: y=8
L
e
0y s 10 15 20 25 30 35
1.834
A = PRo/(kow*)

Fig. 7. Dependence of / 2 on 4 and the bi-linear parameter ; = k,/k,.

6. Note that for P < P*. 1.e. for 2 < ;* = P*f,i(k,w*) the value of S/ is equal to =, as
predicted by eqn (14). According to eqn (16), the corresponding value, which is the
transition point from the linear to the bi-linear response, is

/‘.*

_P*By

kow*

= 1.834. (24)

The dependence of the contact length /2 on the load parameter 4, for various values
of the “‘non-linearity™ parameters | = k,/k,, are presented in Fig. 7. The case 7 = 1, shown
as a horizontal straight line. corresponds to the linear case. According to Fig. 7, for
/ < 1.834, the half contact length //2 = 7/(2f,). the linear case. However, for P > P* when
the beam enters the non-linear response range with the foundation modulus %, the curves
separate. Note that with increasing k, /&, i.e. with increasing stiffening of the base response,
and increasing load P. the contact region / decreases.

To demonstrate the type of non-linearity represented by the chosen values y = k,jkq,
the corresponding base pressure vs deflection graphs are shown in Fig. 8.

INFINITE BEAM ATTACHED TO A BI-LINEAR BASE

This case is shown in Fig. 2. As in the previous section for small P, the base responds
like a linear Winkler foundation with k = k. This is a well known case. Utilizing symmetry
it is governed by the differential equation
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and the corresponding boundary conditions
Y0y =0; w"(0)= P
wi(0)=0: w ()—ZEI
lip} ‘w,n’} - finite. (26)
The solution is
L PB .
w(x) = 3% e v (cos Byx+sinfyx) 0<x < . 27
0

To determine the locations where the deflections are zero, we set w(x) = 0. This condition
reduces to

tanff,¥ = —1 (28)
with the roots
3n n
T=—, —, ... 28’
6 4, (28)

The corresponding bending moments are

P
M(x) = —e Folcos Box—sinfyx} 0< x < 0. (29)

48,
Setting M(%) = 0 and solving for ¥ yields

._m S
,\_430. A (30)

These results are presented in Fig. 2.

The maximum deflection takes place under the load at x = 0. The range of P for which
the linear analysis is valid is obtained from the condition w(0) < w*. It then follows from
eqn (27) that the linear analysis is valid when

2hegn*
T =p (31)
4]

Next consider the case when w(x) > w*. This corresponds to the situation when
P > P* and thus the deflections in the vicinity of P are in the non-linear range. To simplify
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Fig. 9. Infinite beam on bi-linear base.

the analysis, symmetry is utilized, the beam is divided into two domains and each domain
is assigned its own coordinates x and &, as shown in Fig. 9.
The two governing differential equations are

Elwvt +kow, =k, —kyn* 0<x

N

a
Elwt +kow =0 0<ig >, (32)
where w, = () and w. = w(<Z). For the determination of the eight integration constants

and the as yet unknown length. «. the following nine boundary and matching conditions
are prescribed

w0y = 0. w.(0) = ,,f, .
2E1
W) = (0) e (0) = k(@) = wi(0).
W@ = w(0). wl(@) = w(0). lim {w.wl} - finite. (33)

This case was solved by Kerr and Shenton (1986). The general solution is
w(x) = [(k, —ky) & Jw*+ 4, cos(ff,x)cosh (B, X) + A sin (B, x) cosh (f, x)
+ A, cos(f5,x)sinh (B, x)+ A, sin (f,x) sinh (f, x)

w(E) =e "rlAscos () + A, sin (BD)] + e[ 45 cos (BS) + Ay sin (B, 6)]. (34)

Substituting these expressions into eqns (33). except for wi(a) = w?(0), yields the eight
integration constants

p I (PB, T e W - 1 -t )
| A ‘\2/{! 5 K(SC — 8¢ . ‘ss r\"‘(\( S¢C+Kee
Pp —Pp,
A= -, A=~
B 2k, 1 2k,
p 1 ‘"—P/f} [ 4 5 4 K )] w* - 1 ~ )
4, =) P A w45 — | cE AFC — ST — KS§
TTA ! %, S K(s¢ 4 §¢ . o4 r\"(\( §C — KS3§ .
1 {—=Pp oo, |
A =w* 4, = - -ﬁ—l K™ S§+HWHK| 5~ + ¢+ = (5¢—s0) |},
Al Kk, o

147 = /‘15 = 0. (35)
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Table 1. Non-dimensional length fiq for various /2 and 7 values

. PR =001 RENIIRN S 0.5 »=20 =40 »=8.0
P kgn* (K= 03160 (k= 0.707) (x = 0841 (v = 1.189) (v = 1.414) (x = 1.682)
2 0 0 0 0 0 0
k1 1.881 1.371 1.192 0.846 0.695 0.565
6 3,106 1.8350 I.563 1.073 0.874 0.706
8 3.981 2129 1.782 1.208 0.981 0.792
10 1.601 2317 1.929 1.299 1.055 0.851
13 5.363 2.607 2156 1.443 1.170 0.945
20 6.127 2779 2.291 1.578 1.239 1.001
25 6.50% 2.894 2382 1.585 1.285 1.039
30 6.78% 2979 2448 1.627 1319 1.067
35 7.004 3.044 2.498 1.659 1.345 1.088
40 7177 1093 2.3k 1.684 1.365 1.105
where
v = sin(f}a). §=sinh (f,q).

J

¢ =Cos(ffu). = cosh (f8,a).

A=SCHTE+RT +) K= BBy = \il\l ‘ky = Vhl

i

B =k (AED). Iz

IS

Sk (4ED. (35)

The unknown length « is determined from the remaining condition w?(a) = wi(0). The
resulting equation is. for x # 0.

IR+ ROE+RE) = [SE(R"+ 1) - 5o — 1)+ 25wk + 1) =25k (k? — 1) +2x°] = 0.
(36)

It 1s a highly non-linear algebraic equation for the one variable f,a or xf,a, which depends
only on the non-dimensional parameter

Pp,
Sl 37)
Equation (36) was solved numerically for fiye using the International Mathematics and
Statistics Library (IMSL) subroutine ZSCNT for a wide range of 4 and 7 values. Some of
the obtained results are shown in Table 1.

Next, the points at which the deflection 15 = 0 (length L) are determined, by plotting
the resulting w . For this we utilize the « values from Table 1 in order to establish the origin
of the ¢-coordinate for a given load paramecter 2 and ; = k| /k,. The calculated values ff,L
are presented graphically in Fig. 0.

The linear case. » = 1. is represented by a horizontal straight line for which f,L = 37/4,
in agreement with Fig. 2. Thus. as discussed previously, for this case L does not vary with
P. small or large.

Fory # 1 (bi-linear base response) and small P values, L is independent of P. However,
as P exceeds P* and the base exhibits a bi-linear response, the curves for different y = &k, /k,
separate, as shown in Fig. 10. The / value at which the separation takes place is determined
from eqn (31). It is

P*j,
ge o Py (38)

how*

The case ;' = 0 takes place when A = 0. [t corresponds to a horizontal line for w > w*
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in Fig. 8 (elasto-plastic response). Since the presented solution 1s not valid for; = 0, it was
calculated for a very small value of 7. This case was also solved directly by replacing the
first differential equation in (32) by

EMWY4+p*=0 0<y<a (329

The results agreed. The corresponding curve 1s shown in Fig. 10 as = 0.

Next, a similar analysis was conducted for bending moments, noting that M = — Elw”".
The determined distances Ly, of the first zero from the load P are shown in Fig. 11. Note
the strong effect the base non-linearity. and the load P. have on the location of the first
zero of the bending moment distribution. L.

Next, we establish the effect of the track base non-linearity on the rail bending
moments. As an example. the largest bending moment which takes place at the load P will
be determined.

Noting that M(x) = — EIw"(x) and that w(x) 1s given in eqn (34), it follows that

M, = M) = ~2EIfA.. (39)

where A, is given in eqn (35). This moment expression is evaluated for a continuously
welded 115 RE rail (/ = 2743 cm*) of a main-line track. with £ = 20,000 kN e¢m %, For the

12 —— .
Ly Y=0 1/4 ' B :
Lt B
12
09+ : o ; - ]
3
~ 03 =1, Linear Case . i
- a”
0.7+ : . 2- . -
06+ . R
~ 8
05} - . e ]
0.4 - ———— . i e
0 2 5 10 15 20 25 30 35

A = PRo/(kow*)

Fig. 11, Dependence of £ on Pand ;.



910 A. D. Kerrand N. E. Soicher

4000
"g 3000 |-
9 : //’
2 : ) , - R
1000 b ‘g\& L b
of
L4
Lo Neg l
0 P
0 20 40 60 80 100 120
P [kN]

Fig. 12. Effect of suflening base on the rail bending moment at P.

track base it is assumed that k, = 0.5 kN em ™. k, =25kN cm 2 or k, = 5.0 kN cm™*
and w* = 0.25 cm. respectively. For a justification of these parameters refer to Kerr and
Eberhardt (1992). The results of the numerical evaluation are shown in Fig. 12.

Note that for wheel loads P > P* = 2k w*/f, = 36.18 kN, the actual bending moments
may be much smaller than those predicted by the linear analysis with k, = 0.5 kN cm ™~
For example, when P = 100 kNt and k, = 2.5 kN ¢cm 2, the largest bending moment M(0)
according to the linear analysis is 31.5% higher than the one obtained from the non-linear
analysis. For k; = 5.0 kN cm ™7 it is 47% higher. Since the bi-linear analysis represents
closely the actual response in the field, it follows that the linear analysis with k, = 0.5 kN
cm ™" substantially overestimates M, = M(0).

[t may be shown (Kerr and Shenton, 1986 ; Kerr and Eberhardt, 1992), however, that
for problems of this type the linear analysis grossly underestimates the contact pressure
between beam and base at P.

The mechanical explanation of these analytical results is that, because of the stiffening
of the base for P > P* in the vicinity of P, in an actual case the deflections and curvatures
in this beam region are smaller and the contact pressures are larger than the ones that
correspond to the linear analysis.

CONCLUSIONS

At first 1t was shown that the non-dependence of the separation points in the first
problem (Fig. 1), and the location of the zero points in the second problem (Fig. 2), on the
load intensity are a consequence of the linearity of the respective formulation.

To show the deficiencies that may result using a linear base response, a non-linearity
was included in the Winkler foundation, by utilizing a bi-linear response. The following
results were obtained. (1) For the finite beam that rests on the base, the load intensity
affects the location of the point of separation of beam and base, and a *“stiffening” of the
base as well as an increasing load decreases the region of contact. (2) For the infinite beam
that is attached to the base it was established that with increasing load and “stiffening™ of
the base, the distances of the zero locations get smaller, whereas for a “‘softening” base
these distances increase, as compared to the linear case. (3) When the k& value, which was
determined from a test which utilized a relatively small load, is used in conjunction with
the linear analysis. then for P > P* the bending moment M., = M(0) may be substantially
overestimated. However, the contact pressure P, = p(0) may be grossly underestimated.

The above discussion suggests that when analysing continuously supported structures
special attention must be devoted to the non-linear features of the base response.

*Note that currently the static wheel loads of freight cars in North America range between 140 and 174 kN.
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